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Full version:

Individual Fairness

“Similar individuals should be treated similarly.”

Meaningful guarantee at the individual level.

Problem: Metric often unavailable.

Auditor-based Approach

“Can you spot a pair of similar individuals 
who were treated very differently?”

Auditor

“Yes. Individuals #5 and #17.”

Auditor “knows unfairness when he sees it.”

Issue #1: single auditors are prone to biases.

- Decision-makers less likely to entrust a single auditor 
with fairness-related judgements in high-stakes 
scenarios.

- How to reconcile cases disagreed upon by different 
auditors?

Auditing by Panels

- Fairness violation – only when a 
consensus is reached within a 
panel.

- Possible to alter the required 
fraction to algorithmically explore   
the fairness-accuracy frontier.
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One-Sided Feedback

Our Setting
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Online Learning with One-Sided Feedback + 
Feedback from Dynamically-Chosen Panels

Learner updates 
upon seeing:

1. Labels – iff 
predicted 
positively.
2. Fairness 
feedback from 
panel.
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Results
Result #1: Reduction from online learning with one-

sided feedback and feedback from dynamically-chosen 
panels to Contextual Combinatorial Semi-Bandit.

Result #2: Multi-Criteria No-Regret Guarantees
Using regret bound of any algorithm for Contextual 

Combinatorial Semi-Bandit, upper bounding, 
simultaneously:

1. Accuracy: sub-linear regret vs. best fair policy.
2. Fairness: sub-linear number of rounds on which 

fairness violations exist.

𝜋𝑡 ∈ ΔH

Issue #2: real-life feedback is often one-sided.

- “Hidden outcomes” of rejected individuals.
- Uncareful treatment may result in feedback loops.
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Policy

Thm. 1 (simplified.): Using Exp2 algorithm,
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Thm. 2 (simplified.): Using (adapted) Context-Semi-
Bandit-FTPL,
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Accuracy + Fairness Guarantees
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